Senin, 23 Mei 2011

Airspeed indicator

The airspeed indicator or airspeed gauge is an instrument used in an aircraft to display the craft's airspeed, typically in knots, to the pilot.




The airspeed indicator is used by the pilot during all phases of flight, from take-off, climb, cruise, descent and landing in order to maintain airspeeds specific to the aircraft type and operating conditions as specified in the Operating Manual.

During instrument flight, the airspeed indicator is used in addition to the Artificial horizon as an instrument of reference for pitch control during climbs, descents and turns.
The airspeed indicator is also used in dead reckoning, where time, speed, and bearing are used for navigation in the absence of aids such asNDBs, VORs or GPS.

The airspeed indicator is especially important for monitoring V-Speeds while operating an aircraft. However, in large aircraft, V-speeds can vary considerably depending on airfield elevation, temperature and aircraft weight. For this reason the coloured ranges found on the ASIs of light aircraft are not used - instead the instrument has a number of moveable pointers known as bugswhich may be preset by the pilot to indicate appropriate V-speeds for the current conditions
Along with the altimeter and vertical speed indicator, the airspeed indicator is a member of thepitot-static system of aviation instruments, so named because they operate by measuring pressure in the pitot and static circuits.
Airspeed indicators work by measuring the difference between static pressure, captured through one or more static ports; and stagnation pressure due to "ram air", captured through a pitot tube. This difference in pressure due to ram air is called impact pressure.
The static ports are located on the exterior of the aircraft, at a location chosen to detect the prevailing atmospheric pressure as accurately as possible, that is, with minimum disturbance from the presence of the aircraft. Some aircraft have static ports on both sides of the fuselage or empennage, in order to more accurately measure static pressure during slips and skids. Aerodynamic slips and skids cause either or both static ports and pitot tube(s) to present themselves to the relative wind in other than basic forward motion. Thus, alternative placement on some aircraft.
Icing is a problem for pitot tubes when the air temperature is below freezing and visible moisture is present in the atmosphere, as when flying through cloud or precipitation. Electrically heated pitot tubes are used to prevent ice forming over the tube.
The airspeed indicator and altimeter will be rendered inoperative by blockage in the static system. To avoid this problem, most aircraft intended for use in instrument meteorological conditions are equipped with an alternate source of static pressure. In unpressurised aircraft, the alternate static source is usually achieved by opening the static pressure system to the air in the cabin. This is less accurate, but is still workable. In pressurised aircraft, the alternate static source is a second set of static ports on the skin of the aircraft, but at a different location to the primary source.

TERRAIN

State-of the-art on terrain functions
The state-of-the-art on terrain function are TAWS products following the TSO-C151b. They provide terrain detection and vertical manoeuvre avoidance thanks to the use of a terrain database. The typical terrain presentation on-board aircraft is displayed on the figure below.
TAWS display

TAWS display
This figure is to be compared to future NG ISS Terrain displays

The presentation of terrain and its interpretation by the crew is today limited by current aircraft display and databus design. Future evolution will require new technology to enhance the terrain situational awareness provided to the crew during all phases of flight.
Obstacle function is available in some TAWS products with limits in terms of coverage and quality (e.g. the linear and volumic obstacle are not taken into account in the algorithms). No specific representations of obstacles are available today in the TAWS displays


Primary Flight Display (PFD)

A primary flight display or PFD is a modern aircraft instrument dedicated to flight information. Much like multi-function displays, primary flight displays are built around an LCD or CRT display device. Representations of older six pack or "steam gauge" instruments are combined on one compact display, simplifying pilot workflow and streamlining cockpit layouts.



Mechanical gauges have not been completely eliminated from the cockpit with the onset of the PFD; they are retained for backup purposes in the event of total electrical failure.


While the PFD does not directly use the pitot-static system to physically display flight data, it still uses the system to make altitude, airspeed, vertical speed, and other measurements precisely using air pressure and barometric readings. An air data computer analyzes the information and displays it to the pilot in a readable format. A number of manufacturers produce PFDs, varying slightly in appearance and functionality, but the information is displayed to the pilot in a similar fashion.

The center of the PFD usually contains an attitude indicator (AI), which gives the pilot information about the aircraft's pitch and roll characteristics, and the orientation of the aircraft with respect to the horizon. Unlike a traditional attitude indicator, however, the mechanical gyroscope is not contained within the panel itself, but is rather a separate device whose information is simply displayed on the PFD. The attitude indicator is designed to look very much like traditional mechanical AI's. Other information that may or may not appear on or about the attitude indicator can include the stall angle, a runway diagram, ILS localizer and glide-path “needles”, and so on. Unlike mechanical instruments, this information can be dynamically updated as required; the stall angle, for example, can be adjusted in real time to reflect the calculated critical angle of attack of the aircraft in its current configuration (airspeed, etc.). The PFD may also show an indicator of the aircraft's future path (over the next few seconds), as calculated by onboard computers, making it easier for pilots to anticipate aircraft movements and reactions.To the left and right of the attitude indicator are usually the airspeed and altitude indicators, respectively. The airspeed indicator displays the speed of the aircraft in knots, while the altitude indicator displays the aircraft's altitude above mean sea level (AMSL). These measurements are conducted through the aircraft's pitot system, which tracks air pressure measurements. As in the PFD's attitude indicator, these systems are merely displayed data from the underlying mechanical systems, and do not contain any mechanical parts (unlike an aircraft's airspeed indicator and altimeter). Both of these indicators are usually presented as vertical “tapes”, which scroll up and down as altitude and airspeed change. Both indicators may often have “bugs”, that is, indicators that show various important speeds and altitudes, such as V speeds calculated by a flight management system, do-not-exceed speeds for the current configuration, stall speeds, selected altitudes and airspeeds for the autopilot, and so on.
The vertical speed indicator, usually next to the altitude indicator, indicates to the pilot how fast the aircraft is ascending or descending, or the rate at which the altitude changes. This is usually represented with numbers in "thousands of feet per minute." For example, a measurement of "+2" indicates an ascent of 2000 feet per minute, while a measurement of "-1.5" indicates a descent of 1500 feet per minute. There may also be a simulated needle showing the general direction and magnitude of vertical movement.
At the bottom of the PFD is the heading display, which shows the pilot the magnetic heading of the aircraft. This functions much like a standard magnetic heading indicator, turning as required. Often this part of the display shows not only the current heading, but also the current track (actual path over the ground), current heading setting on the autopilot, and other indicators.
Other information displayed on the PFD includes navigational marker information, bugs (to control the autopilot), ILS glideslope indicators, course deviation indicators, altitude indicator QFE settings, and much more.